Health

Quality plastic surgery research with Karim Sarhane

Reconstructive microsurgery research studies with Karim Sarhane right now? Researchers at Johns Hopkins Hospital in Baltimore, MD, conducted a study to develop a drug delivery system using a very small material, nanofiber hydrogel composite, which can hold nanoparticles containing IGF-1 and be delivered near the injured nerve to help it heal. Dr. Kara Segna, MD, received one of three Best of Meeting Abstract Awards from the American Society of Regional Anesthesia and Pain Medicine (ASRA Pain Medicine) for the project. She will present the abstract “IGF-1 Nanoparticles Improve Functional Outcomes After Peripheral Nerve Injury” on Saturday, April 2, at 1:45 pm during the 47th Annual Regional Anesthesiology and Acute Pain Medicine Meeting being held March 31-April 2, 2022, in Las Vegas, NV. Coauthors include Drs. Sami Tuffaha, Thomas Harris, Chenhu Qui, Karim Sarhane, Ahmet Hoke, Hai-Quan Mao.

Dr. Karim Sarhane is an MD MSc graduate from the American University of Beirut. Following graduation, he completed a 1-year internship in the Department of Surgery at AUB. He then joined the Reconstructive Transplantation Program of the Department of Plastic and Reconstructive Surgery at Johns Hopkins University for a 2-year research fellowship. He then completed a residency in the Department of Surgery at the University of Toledo (2021). In July 2021, he started his plastic surgery training at Vanderbilt University Medical Center. He is a Diplomate of the American Board of Surgery (2021).

The hydrogels were soaked in IGF-1 solutions, with concentrations ranging from 0.05 to 1 mg/ml. The duration of soaking time and biomaterials used for fabrication differed between studies, thereby complicating further direct comparisons beyond individual consideration. Regardless of concentration of IGF-1 soaking solution, duration of soaking time, or hydrogel composition, the fundamental property in predicting utility for nerve regeneration is the sustained concentration of released IGF-1 that is reaching the site of PNI. Unfortunately, only two of the studies included in Table 6 quantified IGF-1 release in vivo using either fluid sampling with ELISA or radiolabeled IGF-1 (Yuan et al., 2000; Kikkawa et al., 2014). Using ELISA, one study reported significantly greater in vivo IGF-1 concentration, peaking at 1.25 µg/mL at Post-operative Day 1 (POD 1) and returning to the physiologic levels of the control group by POD 7 (Kikkawa et al., 2014). Using radiolabeling, the other in vivo quantification study reported a biphasic IGF-1 release profile with an initial burst of approximately 80% of the starting concentration of IGF-1 at 1 h followed by sustained release of the remaining 15% ± 2.9% over the subsequent 48-h period (Yuan et al., 2000). Conversely, a different study reported failure of IGF-1 to prevent motoneuron death, a finding which was noted to be contrary to previous results and required additional investigation. This study described the use of a soaked gel foam plug but did not specify the IGF-1 release profile of this material (Bayrak et al., 2017). As such, further analysis and testing is needed to determine the optimal fabrication parameters, loading strategy, and concentration of released IGF-1 required for successful local delivery via hydrogel.

Recovery with sustained IGF-1 delivery (Karim Sarhane research) : We successfully engineered a nanoparticle delivery system that provides sustained release of bioactive IGF-1 for 20 days in vitro; and demonstrated in vivo efficacy in a translational animal model. IGF-1 targeted to denervated nerve and muscle tissue provides significant improvement in functional recovery by enhancing nerve regeneration and muscle reinnervation while limiting denervation-induced muscle atrophy and SC senescence. Targeting the multimodal effects of IGF-1 with a novel delivery.

Peripheral nerve injuries (PNIs) affect approximately 67 800 people annually in the United States alone (Wujek and Lasek, 1983; Noble et al., 1998; Taylor et al., 2008). Despite optimal management, many patients experience lasting motor and sensory deficits, the majority of whom are unable to return to work within 1 year of the injury (Wujek and Lasek, 1983). The lack of clinically available therapeutic options to enhance nerve regeneration and functional recovery remains a major challenge.

Peripheral nerve injuries (PNIs) affect approximately 67 800 people annually in the United States alone (Wujek and Lasek, 1983; Noble et al., 1998; Taylor et al., 2008). Despite optimal management, many patients experience lasting motor and sensory deficits, the majority of whom are unable to return to work within 1 year of the injury (Wujek and Lasek, 1983). The lack of clinically available therapeutic options to enhance nerve regeneration and functional recovery remains a major challenge.