Manufacturing

Top copper turned components suppliers

High quality copper turned components suppliers: Tooling Precision and Press Capabilities – Forming, stamping, and bending are frequent operations used in copper parts. The repeatability, as well as the edge definition, directly depends on tooling precision. The supplier has to keep their dies, jigs, and fixtures in proper condition so as to produce dimensionally stable products. Enquire about the press tonnage and depth limits of forming. Are they capable of turns with a tight radius without cracking the edges? There should be proper die registration and forming pressure control in the case of small part tolerances. In electronics or cooling systems sectors, tolerances are usually measured in microns. A good manufacturer provides accurate batch to batches. They can validate wear of tooling, calibration of the press, as well as die life. Discover even more info at custom copper parts.

Standardize Features: Using standard hole sizes, thread pitches, and other features can reduce the need for custom tools and simplify the machining process. Standard features are easier to produce and often result in lower costs. Simplify Geometries: Complex geometries can increase machining time and tool wear. Simplifying your part design where possible can lead to faster machining and lower costs. Avoid unnecessary intricacies that don’t add functional value to the part.

We have 8 R&D staff responsible for mold design and technical evaluation. They have more than 10 years of experience in stamping and CNC fields. Fortuna has 70 sets of punching machines with the tonnage from 25T to 220T and 42 imported Japanese CNC lathes, which can fully satisfy the diversity of customers’ products and orders. Fortuna has its own processing equipment that can independently develop, process, produce, and inspect products, which greatly accelerates product delivery and improves quality control. Fortuna takes pride in its high efficiency and completion rate. When Fortuna receives a customer order, we are able to provide samples within 20-30 days and mass production within 10-20 days.

These equipments adopt computer digital control technology, which can adapt to various metal stamping processing processes, are easy to operate, and have the characteristics of high speed and high accuracy. Mainly used for processing various metal materials on metal stamping production lines. The automatic setting device can ensure that the mold operation is always stable and high-speed, and assists in some tasks on the processing line that require high-speed switching; The stroke is adjustable, the maximum stamping speed of our equipment is 1200/min, and it can be adjusted independently according to the production cycle required by the product.

At present, our company has introduced 3 sets of Sei bu slow wire cutting machines, whose processing accuracy is within 0.002MM. They are mainly used to process various precision, small and complex terminals, shrapnel, and bracket molds. They mainly control product accuracy while also improving cutting, Speed, the cutting speed can reach 220mm/min. Fortuna has 8 sets of grinders, among which the machining accuracy can reach within 0.002mm. It is capable of precision grinding of various materials and is easy to operate. It can not only complete the processing of conventional parts such as shafts and ball shaft couplings, and can also complete the processing of parts with various complex shapes. Read extra info at dgmetalstamping.com.

After we receive the customer’s drawings, professional engineers will conduct DFM analysis of the product. Design feasibility analysis: Evaluate the feasibility of the mold design, including mold materials, structure and processing technology. By analyzing whether the mold design meets the existing technical conditions and process capabilities, determine its feasibility and provide suggestions for improvement. Manufacturability analysis: Conduct multi-dimensional analysis on the drawings provided by customers to provide customers with a variety of achievable, cost-reducing and efficiency-increasing stamping solutions while ensuring the functional structure of the product.

Whether you’re a seasoned engineer or just starting, these insights will streamline your design process and enhance the performance of your machined parts. Let’s dive in and unlock the full potential of CNC machining for your projects. Key Design Considerations For CNC Machining – Designing parts for CNC machining involves several crucial considerations. Focusing on these areas can help you create parts that are easier to manufacture, perform better, and are more cost-effective.

Design Features To Optimize For CNC Machining – Incorporating specific design features can significantly improve the efficiency and quality of CNC machined parts. Paying attention to these details can enhance the machining process and result in superior products. Hole and Slot Design – Holes and slots are common features in CNC machined parts. Optimal hole sizes and depths vary depending on the material and intended function. Generally, avoiding extremely deep or very small holes can prevent issues during machining. When designing slots, consider the width, depth, and spacing. Properly designed slots can enhance the part’s functionality and make machining more straightforward. Avoiding overly narrow or deep slots can reduce the risk of tool breakage and ensure smooth machining.